Basic principles of X-ray diffraction

Fundamentals of X-Ray diffraction:

X-rays Crystals X-rays interaction with matter X-ray diffraction

X-Rays and Crystals

• Why use X-Rays for crystal structure determination? around several hundred nm around 0.1nm (1Å)

With the naked eye, we can see colors and shapes of objects.

What are X-rays?

• X-rays are short wavelength electromagnetic waves

Wilhelm Conrad Roentgen discovered X-Rays in 1895

Properties of X-rays

- X-Rays are a type of electromagnetic wave
 - $-\gamma$ -rays are generated by nuclear reactions
 - X-Rays are generated by energy transitions that happen when electrons hit a target
- An X-ray has a dual wave-particle character
 - As a wave motion: showing the diffraction phenomenon
 - As a particle: behaving as a particle that has an energy inversely proportional to its wavelength

 $E = 12.4 \checkmark \lambda$

E: energy(keV) λ: wavelength(Å)

Properties of X-rays

Fluorescent behavior

- Emitting visible light: scintillation counter (Nal)

Ionization behavior

 Generating positive and negative ions: proportional counter, position sensitive proportional counter (PSPC)

The refractive index is nearly equal to 1

- Not focused through a lens by refraction
- Showing total reflection at very small incident angles

High penetrating power

– Passing through many materials due to high energy

- X-rays are generated when electrons extracted from the filament (Tungsten) and accelerated by high voltage bombard a target. Cu is commonly used for the target material.
- Almost all of the energy from the electrons is transformed into heat, and a small amount of the energy is converted into X-rays.

Generation efficiency $\epsilon = 1.1 \times 10^{-9}$ ZV (Cu 0.1%) Z:atomic number of a target material; V:applied voltage(V)

Characteristic X-rays & White X-rays

- White X-rays (Continuous X-rays, Bremsstrahlung X-rays)
- Characteristic X-rays (Kα and Kβ)

Principle of X-ray Generation

 White X-rays are emitted when the incident electron's speed is decelerated due to collision to the target

9

Properties of white X-rays

- As the voltage supplied to the target increases,
- the minimum wavelength decreases
- the larger integrated intensity is shown as a broad peak area
- the maximum peak position moves toward the shorter wavelength

Electron energy $E = V_e = hv$, $v = c /\lambda$ Minimum wavelength $\lambda_{min} = hc / V_e = 12.4 / V$ V:supplied voltage v:number of frequency h:Plank's constant c:Velocity of light

Principle of characteristic X-ray Generation

 Characteristic X-rays are produced when an outer orbital electron falls into a vacancy in the K-shell created when high speed electrons eject an inner electron.

Intensity of characteristic X-rays and white X-rays

• Intensity of white X-rays

 $I \propto iV^2Z$

Intensity of characteristic X-rays

 $I \propto i(V-V_0)^n$

The ratio between both intensities depends on the tube voltage.

- I : Intensity
- i : Tube current

- Z : Atomic number V: Tube voltage
- V₀ : Excitation voltage
- n : a coefficient dependent on the voltage

n=2 V is over $2 \sim 3 V_0$ n=1 V is over $3V_0$

Set the X-ray tube voltage & current

Proper tube voltage values to get maximum intensity & P/B ratio

X-ray	excitation	proper voltage (kV)	
tube	voltage	max. intensity	max. P/B ratio
Мо	20.0	60	45~55
Cu	8.86	40~55	25~35
Со	7.71	35~50	25~35
Fe	7.10	35~45	25~35
Cr	5.98	30~40	20~30

The optimal tube voltage to get maximum intensity & P/B ratio is different for each X-ray tube

Interaction of X-rays with matter

• When X-rays encounter any form of matter, they are partly transmitted and partly absorbed.

Absorption coefficient

 When X-rays pass through a sample with thickness of X cm, the intensity of the X-rays decrease from I₀ to I.

- μ : Linear absorption coefficient(cm⁻¹)
- $\mu/\rho\colon$ Mass absorption coefficient (cm^2/g)
 - ρ : **Density** (g/cm³)

Mass absorption coefficient of compounds

 The Mass absorption coefficient of a compound, mixture or a liquid that consists of more than two elements can be calculated as

$$\mu/\rho = W_{A}(\mu/\rho)_{A} + W_{B}(\mu/\rho)_{B} + \cdots$$

$$W_{A}, W_{B} + \cdots : A, B + \cdots$$
 weight percent of element

$$(W_{A} + W_{B} + \cdots = 1)$$

ex. :TiO₂ (CuKa) Ti: $\mu/\rho = 200$ atomic weight=47.9 O: $\mu/\rho = 11.5$ atomic weight=16.0 (μ/ρ)_{TiO2} = $\frac{47.9 \times 200}{47.9 + 16.0 \times 2} + \frac{16.0 \times 2 \times 11.5}{47.9 + 16.0 \times 2} = 124.5$

The photoelectric effect

- X-ray absorption can also occur when an X-ray photon ejects an inner electron.
- At the same time, a fluorescent X-ray is emitted when the electron of the outer orbit falls down to the vacancy of the inner orbit.

Compton scattering

- The X-ray photon shows inelastic collision with orbit electron and loses a part of its energy
- As the result of losing energy, the wavelength becomes longer and scatters relatively to the higher angle side.
- The Compton scattering contributes to the background in the measured data.

Thomson scattering

- The X-ray photon shows elastic collision: when the Xray photon collides the orbit electron without losing any energy, it only changes the reflection direction with the same wavelength.
- This is called the diffraction phenomenon.

Interference from two point-like emitters

The interference takes place according to the way atoms are arranged

Interference

Fundamentals of X-ray diffraction:

XRD methods

The principle of the X-ray Powder Diffraction

Crystallite size & Debye ring

aku

Measured data

26

Background in XRD patterns

The observed background has several sources

- Detector noise
- Natural background (cosmic rays)
- Air scattering
- Scattering from sample holder (e.g. from glass)
- X-ray fluorescence
- Inelastic scattering

The advantages of a powder diffraction method

The powder diffraction method can distinguish crystalline and amorphous phases.

Evaluation item in X-ray diffraction profile

• (more than $2\theta = 5 \text{deg}$)

The advantages of a powder diffraction method

• The diffraction pattern indicates the crystal structure and is characteristic for a substance

Titanium oxide (TiO₂): white powder

Rutile paint, ink

Anatase photocatalyst

The powder diffraction pattern of Rutile

The powder diffraction pattern of Anatase

Powder diffraction pattern of a TiO₂-mixture

- The powder diffraction pattern is characteristic of the substance
- The diffraction pattern indicates the state of chemical combination

The advantages of a powder diffraction method

- A crystal condition of measured sample can be easily recognized
- The diffraction pattern indicates the crystal structure and is characteristic for a every substance
- Each substance in a mixture generates its diffraction pattern **independently**. This information can be used for both phase identification and phase quantification.
- The quantitative analysis of polymorphism (compounds with the same chemical composition but different crystal structures) is possible
 - (<u>Example</u>: α -Fe/ γ -Fe (austenite), Quartz/Cristobalite/Tridymite...)

