X-ray Diffractometer

Instrument

Sealed tube and rotating anode X-ray tube

Sealed X-ray tube
– 1-3 kW

Rotating anode
– 9-18kW

Excitation voltage

• Intensity ratio K α_1 : K α_2 : K β = 100 : 50 : 20

– $K\alpha_1$ radiation is usually used for X-ray diffraction

Target		Wavelength (Å)			excitation
material	No.	Κα2	Κ α ₁	Kβ	voltage (keV)
Cr	24	2.294	2.260	2.085	6.0
Fe	26	1.940	1.936	1.757	7.1
Со	27	1.793	1.789	1.621	7.7
Cu	29	1.544	1.541	1.392	8.9
Мо	42	0.714	0.709	0.632	20.0
Ag	47	0.564	0.559	0.497	25.5
W	74	0.219	0.209	0.184	69.3

X-ray take off angle

- Take off angle is generally set to six degrees.
- There are two types of focal spots, a line focus and a point focus, depending on the take off direction.

Principle of Focusing method

- The X-ray source, the sample, and the receiving slit must be on the focusing circle.

- The sample must be equidistant from the source and the receiving slit.
- The 2θ-θ scanning mechanism is needed.

The conditions for the focusing method

Focusing (BB) vs. Parallel Beam (PB)

Cause of	Non-flat sample	Axial divergence	
systematic errors	Axial divergence		
	Sample absorption		
	Sample displacement		
Calibration	Internal (preferred)	External	
Intensity	High	Medium	
Good for	Indentification of trace phases	Analysis of a sample with	
		curvature/rougn surface	
		Structure refinement	
		In-situ measurements	

Systematic errors

Caused by

- Horizontal scattering (flat specimen error) (sample should be slightly bended, not flat)
 - gives larger effect on low angle side
- Absorption effect and sample displacement, sample transparency
 - gives large effect on the low angle side
- Axial divergence (umbrella effect)
 - $2\theta < 90^\circ$: broadens toward the low-angle side
 - $2\theta > 90^{\circ}$: broadens toward the high-angle side
- Instrument misalignment
 - gives the same shift to each peak on 2theta

Sample Displacement

An angle error occurs when the sample surface is not at the center of the goniometer, so called 2theta offset.

 $\Delta 2\theta$ (Radian) = $-2 \cdot S \cos\theta / R$

S: displacement, R goniometer radius

Umbrella effect

The umbrella effect is caused by vertical divergence of the incident X-ray, which makes the profile asymmetric

Slit selection

slit	size	resolution	intensity	position
	wide	lower	higher	incident side
divergence slit	narrow	higher	lower	
	wide	lower	higher	rocoiving side
scattering slit	narrow	higher	lower	receiving side
	wide	lower	higher	rocciving cido
receiving slit	narrow	higher	lower	receiving side

See the following website for the calculation of the ideal slit size:

http://www.ccp14.ac.uk/ccp/web-mirrors/krumm/html/xray/vcc.html

Counters

Interactions between X-rays and some materials are used to detect diffracted X-rays

Ionization offact	Position Sensitive Proportional Counter
	Solid State Detector
Saintillation offect	Scintillation Counter
Scintiliation effect	Imaging Plate
Photosensitivity	Photofilm

Scintillation counter (0D)

This counter uses a luminescent material called the scintillator to detect X-rays

Scintillation counter (0D)

1D-Silicon Strip Detector

XRF suppression mode for D/teX Ultra

The energy discrimination baseline and window for the D/teX XRF reduction mode can be calculated easily using the following equation:

Calculation:

•baseline_{XRF} = (baseline + upper-end)/2 -1 •window_{XRF} = upper-end - baseline_{XRF}

Example:

•baseline 38, window $16 \rightarrow$ upper-end 54 •baseline_{XRF} = (38+54)/2 - 1 = 46 - 1 = 45•window_{XRF} = 54 - 45 = 9

Comparison of 0D, 1D and 2D Detector

Leading With Innovation

0D – 1D – 2D snapshot/TDI mode

Active area	38.5 x 77.5mm
Pixel size	100um x 100um
Pixel number	298,375
Energy resolution	< 15%(CuKa)
Count rate	> 2Mcps/pixel
Natural count	< 0.1cps/frame
Dead time	3.7 msec (standard mode) 0 msec (zero dead mode)

5 years warranty!

Ultra-high dynamic range and high sensitivity

Seamless switching from 2D to 1D and 0D mode with a single detector

High spatial resolution, direct-detection pixel array detector

XRF suppression by high and low energy discrimination

- Direct photon counting – Efficiency: >99% (Cu, Co)
- 100x100 μm² pixel size
 - No point spread function
 - Resolution = pixel size
- "Zero" background

Detector had to be changed depending on dimension of detector

0D-1D-2D application is done by single detector

Sample preparation

- Aluminum sample holder
- Glass sample holder

Sample preparation

~ glass sample holder ~

1. Powder sample put in the sample holder

3. Smooth the surface of a sample with the back of a glass plate

2. Hold a sample with a glass plate.

4. Wipe the glass holder with cloth

Sample preparation

~ aluminum sample holder ~

1. Put a drug packing paper on a glass plate. After that, powder sample put in the sample holder

2. Hold a sample with a glass plate.

3. Compress a sample by a finger

4. Remove a drug packing paper, turn over the sample.

Zero-background sample holders

- Used for small sample amounts or in order to address transparency effects from weakly absorbing samples
- Available for the standard sample holder and the ASC-6 sample changer

Small sample volume

Low-background silicon sample holder

Sample holder made of a silicon single crystal cut in a certain orientation.

It does neither show any diffraction peaks nor halos like glass sample holders.

Small sample volume

Low-background silicon sample holder

Sample preparation to produce good results

Peak broadening due to sample transparency

- For materials with weak absorption X-rays penetrate deep into the sample. Thus, diffraction occurs in the sample but with a sort of "sample displacement". This so-called transparency effect causes peak broadening.
- Simply using a shallower sample holders generates peaks from the sample holder (e.g. Al), thus zero-background sample holders (oriented Silicon single crystals) are needed.

