X-ray Reflectivity Analysis

What x-ray reflectivity reveals

X-ray reflectivity nondestructively reveals

- layer structure of multi layers
- thickness (1 to 300 nm)
- density
- surface and interface roughness

Total reflection of x-rays

The critical angle $|\theta_c|$ depends on the chemical formula and density of the material.

Reflectivity profile (substrate)

Reflectivity profile (substrate + thin film)

How to interpret the profile

XRR measurement

Optic used in reflectivity measurements

Monochromator	None	Ge (220) double- crystal	Ge (400) double- crystal	Ge (220) four-crystal	
Relative intensity	200	10			
(Reference estimation)	200	10			
Resolution (Angular divergence)	up to 0.04°	up to 0.02°		up to 0.003°	
Wavelength monochromaticity	$K\alpha_1 + K\alpha_2 (+K\beta)$	Kα ₁	$K\alpha_1$	Part of $K\alpha_1$	
Applicable film thickness	0.5 to 100nm	50 to 200nm	50 to 200nm	200nm or greater	
RINT III series	\bigcirc	0			
SmartLab	0	0	0	0	

High-resolution X-ray diffraction (HRXRD)

Kinematical & Dynamical theory of diffraction

- Multiple diffraction occurs in large volume perfect crystal
- Multiple diffraction is considered in dynamical theory of diffraction

Single-scattering by mosaic crystal

(Kinematical)

Multiple-scattering by single crystal

Dynamical theory is applied to ...

- Single crystal substrates like Si, Ge, GaAs, GaN, diamond and quarts, etc.
- Epitaxial films which is fabricated on those single crystal substrates.
 - Kinematical theory is also used when the film thickness is quite small.

Reciprocal space mapping

• Diffraction intensity distribution is plotted on reciprocal space

Epitaxial layer structures

Relaxation Strain Misorientation

Gonio axes \rightarrow Q coordinates

Gonio coordinates (radial) → Q coordinates (orthogonal)

$$qx = \frac{2\pi}{\lambda} \sin \frac{(2\theta/\omega)}{2} \sin \left(\frac{(2\theta/\omega)}{2} - \omega\right)$$
$$qz = \frac{2\pi}{\lambda} \sin \frac{(2\theta/\omega)}{2} \cos \left(\frac{(2\theta/\omega)}{2} - \omega\right)$$

Strain - Relaxation

ex. SiGe epitaxial film on a Si wafer

$$a_o = a + \frac{C_{11}}{C_{11} + 2C_{12}}(c - a)$$

$$a_0 = a_{Si}(1-x) + a_{Ge}x \quad : \text{Vegard's law}$$

$$C_{ij} = C_{ij,Si}(1-x) + C_{ij,Ge}x$$

$$C_{ij} : \text{elastic coefficients}$$

 \rightarrow Ge concentration x

Degree of relaxation

$$R = \frac{a - a_{Si}}{a_0 - a_{Si}} \times 100(\%)$$

Calculation of lattice parameters

Designed structure : SiGe(Ge 3.8%, 400nm) / Si(100) substrate

Peak No.	Х	Y	Intensity	Width(x)	Width(y)	d-value	Mismatch	Integrated Intensity	
1	-0.5208	0.7365	187538.1834	0.0004	0.0001	1.1085	0.0000	16773.0267	
2	-0.5208	0.7346	20051.6359	0.0005	0.0003	1.1105	0.0000	5404.9427	

SiGe(224) $(q_y, q_z) = (-0.5208, 0.7346)$ $\frac{1}{d_{220}} = 0.5208 \implies d_{004} = \frac{1}{0.5208} = 1.920 \implies a, b = 1.920 \times \sqrt{2^2 + 2^2} = 5.431 \text{ Å}$ $\frac{1}{d_{004}} = 0.7346 \implies d_{004} = \frac{1}{0.7346} = 1.361 \implies c = 1.361 \times \sqrt{4^2} = 5.444 \text{ Å}$

174

Optical resolution in reciprocal space

Think about the resolution function!

When the resolution is not appropriate to the crystal perfection...

ex. SiGe/Si (224)

RS slit =1mm

High-resolution rocking curve

- The differences of lattice spacing between the substrate and epitaxial films are observed
 - Thickness and composition ratio of epitaxial films (when the degree of relaxation is known)

Rocking curve profile of an epitaxial sample

When d-spacing changes...

• Peak position difference between the substrate and the films change

When film thickness changes...

The period of oscillation changes

Deviation Angle (arcseconds)

🖉 Rigaku

When the sample has multilayer structure...

Complicated oscillation composed of oscillation from each layer is observed

When the sample has superlattice structure...

Satellite peaks are observed

How to interpret the profile

