The Latest X-ray Equipment and Method For Nanotechnology (SAXS)

Purpose of SAXS

<u>Small</u> <u>Angle</u> <u>X</u>-ray <u>S</u>cattering

Particle size estimation

• Phase identification

SAXS geometry

$$A(\mathbf{q}) = \int_{V} \Delta \rho(\mathbf{r}) \exp(i\mathbf{q}\mathbf{r}) d\mathbf{r}$$

$$q = \frac{4\pi}{\lambda} \sin \frac{2\theta}{2}$$

Scattering amplitude from electron density fluctuations Is given as FT of the density fluctuations

Particle information

Particle size and particle distribution

Particle size and SAXS profile

Shape of SAXS: Breadth of distribution Slope of SAXS : Average particle size

Scattering measurement range

SAXS (1--140 nm) SAXS - super molecular structure X-ray (macromolecules, molecular aggregates) 🎽 WAXS (0.1 - 1 nm) WAXS - Inter molecular distances Porod region SAXS WAXS $(I(q) \propto q^{-4})$ 10⁵ Guinier Power-law region Intensity (arb. units) region <u>Guinier plot - $ln I(q) vs q^2$ </u> $I(q) \propto q^{-2}$ $q < 1.3/R_{a}$ 10 10 Debye form 10³ a = 3 Å10 10⁻² 10⁻¹ 10⁰ q (1/Å)

Scattering measurement range

Porod law (high `q` limit)

at large q,

 $I(q) \propto Q^{-n}$

Guinier`s law (low `q` limit)

$$I(q) = (\rho v)^2 \exp\left(-q^2 R_g^2/3\right)$$

$$\ln I(q) = \ln(\rho v)^2 - \left(\frac{R_g^2}{3}\right) q^2$$

$$I(q)_{q \to \infty} = 2\pi S(\rho_1 - \rho_2)^2 q^{-4}$$

S surface area per unit volume

Phase information

• The structure of long period

SAXS Optics

Rigaku

Line focusing optics

• D/Max 2200 & D/Max 2500

- You can obtain high resolution SAXS profiles

Line focusing optics

• SmartLab, Ultima IV & TTRAX III

– You can switch SAXS and Wide angle X-ray diffraction

Point focusing optics

NANO-Viewer (2D-SAXS System)

You can evaluate Nano-structures

NANO-Solver

• Automatic particle size & distribution estimation!

Relations of size and profiles

• Size: 3 nm

• Size: 60 nm

Relations of dispersion and profiles

Dispersion: 10 %
Dispersion: 90 %

The advantages of SAXS

- Easy sample preparation (non-destructive measurement)
- There is no limit of a sample state (solution, powder, bulk)
- A particle does not have to be a crystalline structure
- Quick measurement and quick analysis
- The average particle size and distribution information in the sample can be estimated
- The particle/pore size you can analyze is about 1~100 nm (in particular, sensitivity is high in less than 10 nm)

The disadvantages of SAXS

- Cannot distinguish between particles and pores
- Cannot distinguish particle information of an individual component, in case of many components
 - Cannot distinguish the scatter by SAXS profile
- A low density sample is difficult
 - Depends on an electronic density difference of a particle and a matrix
- Cannot measure the sample that X-rays cannot penetrate it (Transmission method)
 - When the solvent is with a big absorption coefficient
 - When sample thickness can not be changed

Applications of SAXS

Particle size estimation transmission mode & reflection mode

SAXS profiles and size distribution

• Au nanoparticles

Comparison of TEM image

205

Nano size Cd-Se particles distribution

No.1 No.2 No.3 No.4 No.5

Correlation of fluorescence with SAXS

Nano size of porous silica

Mesoporous silica

Applications of SAXS

Phase identification

Block copolymer

Block copolymer

Block copolymer

Changeable horny layer

Human skin

213

Summary Small angle X-ray scattering method

- Ultima IV, TTRAX III
 - Particle size and distribution
 - Phase identification
- Nano-viewer
 - Phase identification
 - Particle size and distribution

SAXS is for your Nano-technology development!

